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Logistics

* Coding Project 2 due in 1 week

* Use local compute for coding & Colab for testing
Cloud for long-term training
Any questions can be posted in Dingding channel
Be aware of your model size and computation (flops)!
Check out those famous models and works!
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Story So Far

* History

* Lecturel
* first neural network (1943) to recent advances in.deep learning

» Supervised Learning (Classification)

* Lecture 2
* MLP and basic components; Backpropagation

* Lecture 3
e Algorithms, Tricks and Architecture

e Discriminative Model

* P(y]X)
* Labeled datay X — y
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Afterwards

 What if we want to generate X?
* E.g., Ask the neural network to generate a cat!

e Generative Model

* P(X,y) = P(y) * P(X|y)
* Orjust P(X)

* Lecture 4~/
e Deep Generative Models
* Different approachesto model P(X)
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Today’s Lecture: Energy-Based Models

OpenPsi @ I111S

* A particularly flexible and general form of generative model

* Part 1: Hopfield Network

* The simplest model that can memorize.and generate patterns

* Part 2: Boltzmann Machine
* The first deep generative maodel

* Part 3: General Energy-Based Models & Sampling Methods
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Today’s Lecture: Energy-Based Models

OpenPsi @ I111S

* A particularly flexible and general form of generative model

e Part 1: Hopfield Network

* The simplest model that can memearize,and generate patterns

* Part 2: Boltzmann Machine
* The first deep generative maodel

* Part 3: General Energy-Based Models & Sampling Methods

4/10 Copyright @ 111S, Tsinghua University
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Classification

* Recap: Classification
* Layer-by-layer computation
* Computation Graph: Directed Acyclic Graph
* Feedforward networks
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 What about ...
* Loops! ;
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A Loopy Network

* A “fully-connected” network

e Each neuron receives inputs from all the other neurons
* y; = +1 or — 1 with hard thresholding

o130 A o)

The output of a neuron
affects the input o the
neuron

4/10
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Hopfield Network

* A “fully-connected” network

e Each neuron receives inputs from all the other neurons
* y; = +1 or — 1 with hard thresholding

* Symmetric weights
yi= 0 (Z wjiy; + bi)

J#i

+1if z>0
9(2) :{—1ifz£O

A symmetric network:
Wij = Wji

4/10
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Hopfield Network

* A Hopfield Network may not be stable!
* At each time each neuron receives a “field” z; = qutiniyj + b;
* |f the sign of neuron matches the sign of the field, it flips

yi < =y it y; (2 wjiyj + b | <0
JES!
* This can further cause othérneurons to flip!

yi = 0 sziJ’j + b;

JE)

O(z) =

4/10 Copyright @ 111S, Tsinghua University
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Hopfield Network

g : el ) 1i
» Neurons flip if its sigh does not match its'local “field 0(z) = {fl i;; 20
* y; « —y; if yi(Zjiiniyj + bl-) < O0~fanall neurons
* Repeat until no neuron flips Vi = @(Z Wjiyj + bi)
J=i

* Will this process converge?

4/10 11
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Hopfield Network

OpenPsi @ I111S

* Let y; denote the value of y; before a “flip”
* Let y;" denote the value of y; after a “flip”

o If y[(zjiiwjiyj + bl-) > 0, nothing happen

i <z Wjiyj + bi) =Y (Z Wjiyj + bi) =0

J#Fi

J#Fi

yi= 0 (Z wj;yj + bi)

J#i

+1ifz>0
—1ifz<0 ’

4/10
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Hopﬂeld Network

* Let y; denote the value of y; before a “flip”
* Let y;" denote the value of y; after a “flip”

o If y[(zjiiwjiyj + b-) => 0, nothing happen
o If yi (Zjiwjiyj + bi) < 0pyit = <

Vi <2 W;j;yj + bi) (Z wsij + b ) =2yi <2 Wjiyj + b )
y

j#i J#L =t

=0 (Z Wjiyj + bi)

J#i

+1ifz>0
Copyright @ 1115, T@;J(ZU)V‘”S_”V {_1 lf 7 S O
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Hopﬂeld Network

* Let y; denote the value of y; before a “flip” Every flip increases
* Let y;" denote the value of y; after a “flip” 2yi (X2 Wji yj + b;)
o If y[(zjiiwjiyj + b-) => 0, nothing happen

It y; (Z]:tlely]+b)<0 :VL Vi

Vi <z Wjiy; + bi) (Z W;iy; + b; ) — Zyl (Z W;iyj + b; ) Positive!
y

j#i j#i J#i

J#i

+1ifz>0
Copyright @ I11S, T@q(zZJ)VErS_”V {—1 lf YA S O
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Hopfield Network

* Consider the sum over every pair of neurons (assume w;; = 0)
D(y1, ..., yn) = z Yiw;j¥i+ yib;
i<j
* Any flip that changes y; to y;"increases D (yq, ..., Vn)
AD = D(,yl-l_, ) — D(’yl—’ ) = Zyl-l_ 2 W]ly] + bl) > ()

J#Fi

* Convergence?




Hopfield Network

* D is upper-bounded (we only change y;)

D, yn) = ) Wiy + Zblyl lel,|+2|b|

1<J
* AD is lower-bounded

Amin =0 7
J

i<j

2 wi;yj + b;
J

> (

* {y;} converges with a finite number of iterations!
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Hopfield Network

* The Energy of Hopfield Network
E=-D= —Z WiiViyj = z b;y;
i<j i
* The evolution of Hopfield network-always decreases its energy!

* The concept of Energy

* Magnetic dipoles in a disordered-magnetic material e T [
e Each dipole tries to align’itself to the local field - N
: : : : . Y g AP - ]
* Field at a particular dipole f(p;), p; is the position of x; =" = =
f(pi)=2]jxj+bi -l = ==l =

— _...-_ -——-—""‘._,ﬁh— o

.« * Ising model of magnetic materials.(lsing.and Lenz, 1924) L —————
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Hopfield Network: Pattern Generation

* The Hopfield network (simplified)

E = —Z WiiYiYj

i<j
* Network evolution arrives at a localoptimum in the energy contour
* Every change in the network state Y decreases the energy E

* Any small jitter from this stable state returns it to the stable state

|~

PE

S !
i
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Hopfield Network: Pattern Generation

* The Hopfield network (simplified)

4/10

PE

E = —Z WiiYiYj

i<j

* Each local optimum state is a “stored” pattern
* If the network is initialized close to a stored-pattern, it evolves to the pattern

* Associated Memory (content-addressable memory)

|~

o, _— o F
e s T R ) T
"3{:_9.’.:.:;‘.':'3-‘# Wt S
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Hopfield Network: Pattern Generation

* Image Reconstruction by Hopfield Network (1982)

Criginal Degraded Eeconstruction
: ST TS . |

b

Hoptield network reconstructing degraded images
from notsy (top) or partial (hottorm) cues.

 How can we store the desired patterns?

4/10 Copyright @ 111S, Tsinghua University
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Hopfield Network: Training

* Let’s teach the network to store this image
* N pixels 2 N neurons

e Symmetric weights 2 %N(N — 1) parameters.to learn

* We omit bias terms for simplicity

* Design {w;;} such that the energy is at a local minimum for a desired
pattern y |
* Hebbian Learning Rule'w;; <y;y; (1949)

* E == DiciWiiViys = —%N(N — 1) - lowest possible energy!

4/10 Copyright @ 111S, Tsinghua University
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Hopfield Network: Training

* Let’s teach the network to store this image
* N pixels 2 N neurons

e Symmetric weights 2 %N(N — 1) parameters.to learn

* We omit bias terms for simplicity

* Design {w;;} such that the energy is at a local minimum for a desired

pattern vy o~
* Redundancy! y & — y'will‘be’both stored

E=-— z Z W;iViYi

i j<i

Copyright @ 111S, Tsinghua Universi
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Hopfield Network: Training

* What if we want to store multiple patterns?

* P ={yP} N, patterns
* Hebbian Learning Rule
Wij = N, zyl y]
* The issue of Hebbian Learning
* Spurious local optima

4/10 Copyright @ 111S, Tsinghua University
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Hopfield Network: Training

* Example: 4-dimensional Hopfield Network with/Hebbian Learning

* Three patterns to store
e Let’s assume the value of each neuron is 1 or -1

“Fake” memory

-1,-1

141

Left.: il Right:
desired stored
patterns | patterns

1,-1

. Disappeared!

4/10 -1 -1 '1,1 1’1 1’_‘1 Copyright @ 111S, Tsinc al:l i
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Hopfield Network: Training

OpenPsi @ I111S

* We want to construct a network with desired stable local optimum
* A pattern can be recovered after 1-bit change

* For a specific set of K patterns, we can always build a network for
which all patterns are stable provided K-< N

* Mostafa and St. Jacques (1985)
* For large N, the upper bound on K'is actually

* MceElice et. al. (1987)
* Still possible with.undesired local minimum

* How can we find‘the weights?
e K patterns to.be stored
«0 * Avoid undesired local minimum-asmuch.asswe can

4log N

25
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Hopfield Network: Optimization

* Problem Formulation
* Desired patterns P = {y?}

* Energy function E(y) = — %yTWy (we omit bias term for simplicity)
* Objective for W

* Minimize E for all y?
* It should also maximize E.for all non-desired patterns!
W = argmmi,nz E(y) — Z E®")
YEP y'ép
* Gradient Descent

WeW—n(ZwT— Zy’y’T>

4/10 Coy 11S, Tsinghua Univéyaf
PE ¥
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Hopfield Network: Optimization

e Update rule for W

W<—W—n<zny— Zy’y’T>

YEP yI¢P

Energy

@ 111S, Tsinghua University
state
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Hopfield Network: Optimization

e Update rule for W

WeW—n yy! z y’y’T>
YEP yI¢P

* The first term is minimizing the energy of desired patterns!

4 Target patterns

Energy

\4

4/10 Copyright @ 111S, Tsinghua University 28
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Hopfield Network: Optimization

e Update rule for W

W<—W—77<zny— zy’y’T

YEP VI¢P

* The second term essentially raises all the patterns in the space
* Issue??

Energy S
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Hopfield Network: Optimization

e Update rule for W
W« W — n(

zny—

* Let’s just focus on the valleys!

4

Energy

A

|

1. IT
D)
y'¢P & y'eValley

4/10
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Hopfield Network: Optimization

e Update rule for W
W« W — n(

zny—

* Let’s just focus on the valleys!
* But how can we find the valleys?

4

Energy

A

|

5
y'¢P & y'eValley

4/10
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Hopfield Network: Optimization

e Update rule for W

WeW—n (2 yy! — z y’)f”)
YEP y'¢P & y'eValley

* Let’s just focus on the valleys!
* But how can we find the valleys?
* Evolution of Hopfield Network will'‘converge to a valley

A

Energy

4/10 Copyright @ I11S, Tsinghua University
state
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Hopfield Network: Optimization

e Update rule for W

WeW—n (z yy! — z y’y’T>
YEP y'¢P & y'eValley

* Compute outer-products of desired patterns y

* Randomly initialize y’ for multiple times
* Run evolution for random y’ until.convergence
* Calculate outer-product-of y’

 Compute gradient-and update W

4/10 Copyright @ 111S, Tsinghua University
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Hopfield Network: Optimization

e Update rule for W

WeW—n (2 yy! — z y’)f”)
YEP y'¢P & y'eValley

Compute outer-products of desired patterns y

Randomly initialize y’ for multiple times
* Run evolution for random y’ until.convergence
* Calculate outer-product-of y'

Compute gradient-and update W

Valleys are NOT equivalently important...

4/10 Copyright @ 111S, Tsinghua University
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Hopfield Network: Optimization

* Which valleys are important?

* Primary object: ensure desired pattens stable
* We want to ensure desired patterns are.in broad valleys

Energy | I

4/10 Copyright @ 111S, Tsinghua University 35
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Hopfield Network: Optimization

* Which valleys are important?

* Primary object: ensure desired pattens stable
* We want to ensure desired patterns are.in broad valleys
e Spurious valleys around desired patterns are more important to eliminate

Energy 1 T

4/10 copyright @ ITTS, TSinghua UNiversity
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Hopfield Network: Optimization

* Which valleys are important?

* Primary object: ensure desired pattens stable
* We want to ensure desired patterns are.in broad valleys
e Spurious valleys around desired patterns are more important to eliminate

e Evolution from desired patterns

4

Energy

X

4/10

Copyrignht @ ITIS, Tsinghua University
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Hopfield Network: Optimization

e Update rule for W

WeW—n (2 yy! — z y’)f”)
YEP y'¢P & y'eValley

Compute outer-products of desired patterns y

Initialize y' by all the desired\patterhs
* Run evolution for random y’ until.convergence
* Calculate outer-product-of y'

Compute gradient-and update W

Still issues?

4/10 Copyright @ 111S, Tsinghua University
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Hopfield Network: Optimization

* Recap: we raise the valleys next to the desired patterns

Energy

4/10
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Hopfield Network: Optimization

* Recap: we raise the valleys next to the desired patterns

 What if a pattern is close to the valley?
* Naively forcing a valley to raise.may hurt the learned representation
* Particularly challenging when y are continuously valued (e.g., tanh activation)

A

Energy

v

4/10 Copyright @ 111S, Tsinghua University 40
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Hopfield Network: Optimization

* New idea: we only raise the “neighborhood” of desired patterns!
* It is sufficient to make each desired pattern a valley
* Note: we want to raise the neighborhood of the decent direction

Energy T

v

4/10 Copyright @ 111S, Tsinghua University 41
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Hopfield Network: Optimization

* New idea: we only raise the “neighborhood” of desired patterns!
* It is sufficient to make each desired pattern a valley
* Note: we want to raise the neighborhood of the decent direction

* Implementation

* We initialize y' by the desired patterns
* Only perform evolution for a few, steps!

y

Energy

A

4/10
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Hopfield Network: SGD Optimization

* SGD update rule for W
W < W —n(Eyeplyy™] =E, [y'y'T])

* Compute outer-products of random desired pattern y

* Initialize y' by a random desired\pattern
* Run evolution for random y’‘for a few.timesteps (2~4)
* Calculate outer-product of .y’

 Compute gradient and update W

* In theory, O(N) patterns can be stored in the network (with
undesired valleys)

* How to store more patterns?

4/10 Copyright @ 111S, Tsinghua University
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The Expanded Network

OpenPsi @ I111S

* |dea: introduce redundant neurons to increase.network capacity
* Original N neurons for patterns: visible'neurons
* Additional K neurons: hidden neurons

Hidden

Visible Neurons

Neurons

4/10 14




The Expanded Network

* |dea: introduce redundant neurons to increase.network capacity
* Original N neurons for patterns: visible'neurons

 Additional K neurons: hidden neurons
Visible bits Hidden bits

90 000000000 CLOVOOO0000000

o o] 00 0C006900000000000
L 18] o] (0] @90 e 000000000000

o] (000 | [9/0C/90000000000000

oo (o] o] 0000000000000

L 4 0] S0 | (9000000000000 0e0e
ol [ [l [0 (900000000 eeeeeee.

.O..O..?OQQQQQQOOOOOOOOO

N+ K




The Expanded Network

* N dimensional pattern 2 N + K dimension
* Ql1: How can we store the patterns with'K additional units? (random filling?)
* Q2: How to retrieve the desired patterns? (perform evolution?)

Visible bits Hidden bits

L4 400 0 | 0QUeer 0000000000
OBOOO@OOOOOOOOOOOOOOOO

We will have an elégant solution by converting a

Hopfield network to a probabilistic model P(v, h)!

L 4 9. o | 900000000000 eee
ol l L[ [0 90000000 eeeeeeee.

.O..O..%)OQQQSQQQOOOOOOOOO

N+ K
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Today’s Lecture: Energy-Based Models

OpenPsi @ I111S

* A particularly flexible and general form of generative model

* Part 1: Hopfield Network

* The simplest model that can memorize.and generate patterns

* Part 2: Boltzmann Machine
* The first deep generative madel

* Part 3: General Energy-Based Models & Sampling Methods

4/10 Copyright @ 111S, Tsinghua University 47
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The Helmholtz Free Energy

* Recap: A thermodynamic (F#\J]=2) system
* A probabilistic system
* Hopfield network is a simplified deterministic.version

* A thermodynamic system at temperature T
* Pr(S) the probability of the system at'state S
* E+(S) the potential energy at state S
* U the internal energy; the capability to do work
* H; the entropy, internal disorder of the system
e k Boltzmann constant

* Free energy-Fy = U= KT Hr

4/10 Copyright @ 111S, Tsinghua University
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The Helmholtz Free Energy

OpenPsi @ I111S

* Free energy
Fr= ) Pr(S)Er(S) + KT Pr(S) log Pr(S)
S S

* Boltzmann distribution (also known as Gibbs distribution)

1 E+(S)
P.(S) = = -
r(S) ZeXp( kT )
* Minimum Free-Energy Principle: minimize Fr w.r.t. P7(S)

* The probability distribution of states at equilibrium
e Z normalizing constant

Given an energy-function.E7(S), if we follow a proper physical evolution process,
wthe system state willhconverge to the Beltzmann distribution

49
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Stochastic Hopfield Network

* Let’s model our Hopfield network as a thermodynamic system
e T =k =1 for simplicity
* Energy

E(y) =— 2 W;iyiyj — biyi

i<j

* Boltzmann Probability

1 1
P(y) = ~ exp(=E(y)).= 7 €XP (2 Wiiyiyj + bi)’i)
i<j
* Stochastic Hopfield-Network
* P(y) modelsthe stationary probability distribution of states y given E(y)

* We generate patterns by sampling from P(y)

4/10 Copyright @ I11S, Tsinghua Uni 50
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Stochastic Hopfield Network

* Let’s consider the “flip” operation
e Deterministic = probabilistic
* Goal: change y; to 1 with probability P(y; =-1]y;+;)

 Assume y and y' only differ at position i-and y; = —1
*logP(y) =—-EQ@)+C
* E(y) = = XicjWijViyj —biyi
* log P(y) — logP((y’) = E(y)’)(— E)(y) = —Z(- Wijyj — Z)bi
P(y) P(y; =1yjs )P\Yj=i P(yi = 1|yjx;
1 ~ — 1 5 ; ; — l - — iiYi — Zbl
PON T PRl = ~ 1|y} )P (¥j2i) 1= P(y; = 1ly1) ZW’y]

4/10 Copyright @ 111S, Tsinghua University 51
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Stochastic Hopfield Network

* Let’s consider the “flip” operation
e Deterministic = probabilistic
* Goal: change y; to 1 with probability P(y; =-1]y;+;)

 Assume y and y' only differ at position i-and y; = —1
* logP(y) =—E() +C
* E(y) = = XicjWijViyj —biyi
* log P}())(f))— log PP((y’) =1 |E (y)’I))(— E )(y) = — % ( Wij)ijl — Z)bi
o2y~ = AP O7w) T PO = 1) 2 2
1
1+exp(— 2 wijyj—Zbi)

4/10 Copyright @ 111S, Tsinghua University 52
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Stochastic Hopfield Network

* The whole update rule
* Fieldaty;: z; = 2y wiyy; + 2b; Field quantifiés the
. P(yi = 1|yj¢i) — 1 = o(z;) delta energy of flip

1+exp(—2z;)
* Evolving the network
* Randomly initialize y

* Cycle over y;, fixed othervariables.fixed and sample y; according to the
conditional probability

* After “convergence”, we can get samples of y according to P(y)
* This sampling procedure is called Gibbs sampling

* How can we retrieve a.stored pattern???
* This is a stochastic,process!

4/10 Copyright @ 111S, Tsinghua University 53
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Stochastic Hopfield Network

* Network evolution Rt TR,
* initialize y,
* For1 <i <N, y;(t +1)~Bernoulli(o(z;(t)))
* Until convergence

* Retrieve a stored (low energy./ high-probability) pattern y
* Given sequence of samples y,, ..., ¥
* Simply take the average of final M samples

L
1
yi =137 Z yi(t) >0
| t=L-M+1 |
* If you want-a'probability instead of a single vector, you can use the frequency derived
from {y;_m41, -y} to approximate the stationary distribution

«0 * In many applications, we simply-take-M.=-1 (output y;) 54
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Stochastic Hopfield Network: Annealing

* Find the state with lowest energy?

* Network evolution with temperature annealing
* initialize yo, T < Tyax
* Repeat
* Repeat a few cycles
* For1<i<N,y;(T)~Bernoulli (0 (%Zi(T ))>

* yi(aT) « y;(T); T « T
* Until convergence

* Final state as theretrieved pattern
* With temperature annealing, the system will converge to the most likely state
4/10 * POSSibly Iocal minimum in prapgnlitc;)ells Tsinghua University 55
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Boltzmann Machine

* A generative Model (simplified)

E Howto learn W for desired patterns?
. P(y) _ —exp( (37)) P

e Parameter W

* It has a probability for producing any binary pattern y
* We assumey; = 0or 1l(or+1)
1
3w
J

4/10 Copyright @ 111S, "sin,qlz gxriity: 1 |y]-'/—'l) —
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Boltzmann Machine: Training

* Goal
* Remember a set of desired patterns P-= {yP}
* Now we have a probability distribution-P (y)-with parameter W

* Objective: maximum likelihood learning (assume T = 1)
* Probability of a particular pattern )
exp (7yTWy)

1 ,
Y.y €XP (7 y" Wy )

P(y)=

* Maximize log- I|keI|hood

L(W) = 2N 22 yIwy — logz: exp( ’TWy’)
P

yEP

4/10 Copyright @ I11S, Tsinghua U 57
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Boltzmann Machine: Training

* Maximize log-likelihood

L(W) = iz 1yTWy — logz exp ly’TWy’
Np £ 2 2

YEP yI
* Gradient Ascent VWUL

4/10 Copyright @ 111S, Tsinghua University 58
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Boltzmann Machine: Training

* Maximize log-likelihgad

1
— log z exp (E y’TWy’)
y/

* Gradient Ascent le-jL

1
* VL = N—szep ViYj

4/10 Copyright @ 111S, Tsinghua University 59
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Boltzmann Machine: Training

* Maximize log-likelihood

L(W) = iz 1yTWy logz: exp ly’TWy’
Np £ 2 2
y/

yEP

* Gradient Ascent le-jL

1 T [
exp( 5y Wy , -
* Uy L = NLPZYEP ViV — Yo € 5 ) iy Exponentially many terms!
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Boltzmann Machine: Training

* Maximize log-likelihood

L(W) = iz 1yTWy logz: exp ly’TWy’
Np £ 2 2
y/

yEP

* Gradient Ascent le-jL

1 T [
1 exp(5y Twyt)
* VwijLzN_PZyEPyiyj_Zyl ZZ Vil

1 S . o
. VWUL = N—szep Viyj <k, [yl-yj] Monte-Carlo Approximation

* Draw a set of samples S fory" according to the probability,

1 1 1.1
* WL = N—szep YiVj= EZyIESyiyj
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Boltzmann Machine: Training

* Maximize log-likelihood witth Monte-ClarIo samples
Vi, LIW) = N—Pz Yy =7 z ViYj
YEP YIES
* How to draw samples from P (y)?
* Running the stochastic network (Gibbssampling)
* Randomly initialize y(0)
* Cycle over y;(t), samplingaccording to P(y;(t)|y;-i(t))
* After convergence; wegeta sequence of samples {y(0), ..., y(L)}
* Get the final-M states as samples S = {y(L—M + 1), ...,y(L)}
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Boltzmann Machine: Training

* Overall Training
* |nitialize W
* Maximize log-likelihood with M Monte-Carlo-samples

1 1
V..LW=—E --——E 'y
wi; LW) prepyly, Myresyly]

* wij <« wi; + vaijL(W) (weare maximizing likelihood)

Energy

state
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Boltzmmann Machine with Hidden Neurons

* Let’s get back to hidden neurons!
e v visible neurons (visible patterns), h hidden neurons (latent variables)
*y=(Wh)

* A joint probability distribution ,
« P(Y) = P(v,h) Visible e —
* P(v) = XpP(v, h) Neurons L

e
7,

* We only care about patterns
* The marginal distribution!

* New objective
* Maximize the' marginal-probability

=
s

e
S

=
KL

—

X

L0

e
"

=

"\‘
) A

S
B
7=

i
N7

ok

S
S
————

S

ZX5 Y
=23

=
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Boltzmann Machine with Hidden Neurons

* Maximum log-likelihood learning

B B exp(y’ Wy)
Plv) = Z Plv.h) = Zh: yrexp(y'"Twy’)

1 I/
L(W) = ﬁ; log (2 eXp(yTWy)> — log (Z exp(y""' Wy )>

h yI

* Gradient VL(W)?



Boltzmann Machine with Hidden Neurons

* Maximum log-likelihood learning

B B exp(y’ Wy)
Plv) = 2 Pv.h) = zh: yrexp(y'"Twy’)

1 !/
L(W) = ﬁ; log (2 eXp(yTWy)) — log (Z exp(y"' Wy )>

h yI

* Gradient VL(W)?
Monte-Carlo Estimate!



Boltzmann Machine with Hidden Neurons

* Maximum log-likelihood learning

P(v) z Pv,h) = 2 exp(y" Wy)

— .y exp(y" Wy')
1
L(W) = Pl z log (2 exp(yTWy)> — log (Z exp(y’TWy’)>
veP h yI

* Gradient VL(W)?
* The first term is also in"the‘form of log-sum
* Monte Carlo estimates for each v € P!
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Boltzmann Machine with Hidden Neurons

OpenPsi @ I111S

* Maximum log-likelihood learning
1 I __7/
Vi, LIW) = ﬁz Enlyivil—Ey|yvivi]

veP

* Second term
* Freely generate samples w.r.t. p(y)

* Random initialization, cyclic Gibbs.sampling
* First term

* Generate samplesw.r.t. p(y) conditioned on a fixed v
 Randomly initialize h,run Gibbs sampling over h
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Boltzmann Machine with Hidden Neurons

* Overall Training
* |nitialize W
* For v € P, fixed the visible neurons, run'Gibbs sampling to get K samples
* Collect all conditioned samples as S;

 Randomly initialize all neurons, run"Gibbs sampling to get M samples
* Collect free samples as S

* Maximize log-likelihood with N, K4 M Monte-Carlo samples

1 1 o
Vi, LW) = VoK z Yi¥i ~ 7 2 ViYj

YVES, YIES
Wij — Wi + T]VWUL(W)
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Boltzmann Machine

* Summary

* A stochastic version of Hopfield Network

* Nice mathematical properties

* Large capacity for storing patterns (with hidden neurons)
* Pattern generation

* Gibbs sampling
e Pattern completion

e Conditioned Gibbs sampling
 Classification??

e vy=(v,h,c), cislabel

* cas aone-hot vector (0-1'variables)

* Posterior P(c|v)

L . Hopfield netwotk reconstructing degraded images
* Even conditional generation: B(12)C ks, rsinana miversicy Fromm noisy (top) or partial (bottorn) cuss, 0
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Boltzmann Machine

* The issue
* Training is hard!

* Gibbs sampling may take a very long time to.converge
 also called mixing-time

* Not really applicable for large problems

e Can we design a better structure for faster Gibbs sampling mixing?
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Restricted Boltzmann Machine

* A particularly structured Boltzmann Machine
* A partitioned structure
Hidden neurons are only connected to visible.neurons
No intra-layer connections
Invented under the name Harmonium by Paul Smolensky in 1986
Became promise after Hinton invented fast learning algorithms in mid-2000

HIDDEN

4/10 72
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Restricted Boltzmann Machine

 Computation Rules: same as Boltzmann machine
* Hidden neurons h;

1
Zi = ZWUU] ) P(hl = 1|U]) = 14 eXp(—Zi)
J
e Visible neurons vj lterative Samphng'
1
Zj = ZWijhi, P(UJ = 1|hl) = 1+ eXp(—Zj)

HIDDEN
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Restricted Boltzmann Machine

e Sampling
* Randomly initialize visible neurons v,
* Iterative between hidden and visible neurons
* Get final sample (Vy, hoo)

HIDDEN

VISIBLE

* Conditioned sampling?
* Initialize vy as the desired-pattern
» Sample h, (the conditional distribution is exact!)
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Restricted Boltzmann Machine

e Maximum Likelihood Estimate

1
Vo, L(W)_NKZUO‘ 0; =9 vooihooj
P

VEP

* No need to lift up the entire energy landscape ... (recap)
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Restricted Boltzmann Machine

e Maximum Likelihood Estimate

Vi L(W) =

N,K Z Voifto

VEP

* We can starting sampling witha given v

* Raising the neighborhood of the desired patterns will be sufficient

4

Energy

A

vooihoo

4/10
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Restricted Boltzmann Machine

e Maximum Likelihood Estimate

1
Vo, L(W)_NKZUO‘ 0; =9 vooihooj
P

VEP

* Directly run Gibbs sampling from v, for 3 steps will be sufficient!

4/10 77
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Restricted Boltzmann Machine

e Maximum Likelihood Estimate

1
VWUL(W) —_ N_Pz Uoihoj e vlihlj

VEP
* Only 3 Gibbs sampling steps are-needed!

* We can also extend (R)BMs to to-continuous values!
* If we can explicitly sample from P (y;|y;+;)
* Exponential familyl (FYI ©)

* “Exponential-Family Harmoniums with an Application
to Information Retrieval”, Welling et al., 2004
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Deep Boltzmann Machine

e Can we have a deep version of RBM?

* Deep Belief Net (2006)  ridden layer 3
* Deep Boltzmann Machine (2009) ”
 Sampling? Hidden layer 2
* Forward pass: bottom-up
* Backward pass: top-down Hidden'layerl
* Practical Trick: Layer-by=layer pretraining l t

* “Deep Boltzmann Machine”,"AISTATS 2009 |visibie layer (observed) OO =0
* The very first deep generative model
e Ruslan Salakhutdinov & Geoffrey Hinton

deep belief net Deep Boltzmann Machine

4/10 Copyright @ 111S, Tsinghua University 79
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Deep Boltzmann Machine

e Can we have a deep version of RBM?

* Deep Belief Net (2006)
* Deep Boltzmann Mach

* Sampling?
Deep Boltzmann Machine
F‘ ( 4000 units ]

° B I
e P ( 4000 units )
o I
¢ De( 4000 units
P d
S \n‘:,;’;f‘;ffzzzm
* R

E a Stereo pair

Gaussian visible units
(raw pixel data)

4/10

ine (2009)

Training Samples

Hidden layer 3

il

Hidden layer 2

Generated Samples

X o &\ = §
8| =

“« (W% |\ | &
£ | X |22 o
~ |EwN TR
¢ R H

OpenPsi @ I111S

Boltzmann Machine

80
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‘A

Pl

NobelPrdédutreach™PMto!
Jo'hn J. Hopfield Géoffre .Hin’ron
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Today’s Lecture: Energy-Based Models

OpenPsi @ I111S

* A particularly flexible and general form of generative model

* Part 1: Hopfield Network

* The simplest model that can memorize.and generate patterns

* Part 2: Boltzmann Machine
* The first deep generative maodel

* Part 3: GeneralEnergy-Based Models & Sampling Methods
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Energy-Based Model

OpenPsi @ I111S

* Goal of generative model
* A probability distribution of “patterns” P (x)

* Requirement
* P(x) = 0 (non-negative)
* [ P(x)dx =1 (sumto 1)
* Energy-Based Model
* Energy function: E (x; 8y parameterized by 6
¢« P(x) = %exp(—E(x; 0))
e / = fx exp(—E(x; 9)) dx partition function

Why use exp() function?
e.g. |x| or |x|?
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Energy-Based Model

OpenPsi @ I111S

A particular class of density function

1
P(x) = Eexp(—E(x; 6))

* Pros
« Common in statistical physics

 Compatible with log-probability measure to capture large variations
* Exponential family (e.g.,/Gaussian)

* Extremely flexible, i:e., use any E (x) you like (e.g., any f(x): R% - R, even CNNs)
* Cons

* Non-trivial to sample’and train due to the partition function Z
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Energy-Based Model: Training

A particular class of density function

1
P(x) = Zexp(—E(x; 0))

 Maximum Likelihood Training
* L(0) =logP(x) = —E(x;0)—~logZ(6)
* Monte-Carlo estimates for partition-function Z(6)

* Contrastive Divergence Algorithm

* VOL(H) ~ VH(_E(xtrain; H) + E(xsample; 8))
* Generating samples is the foundation for both training and generation!

* How to sampfefrom an general energy-based model?
* Orin general: sample from an arbitrary dlstrlbutlon p(x)

4/10 Copyright @ I11S, Tsinghua Uni 85
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Sampling Methods

* Goal: sampling from P(x)
* Assume we have a valid probability measure
* P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)

* Let’s start from an easy example
e Categorical distribution?

* Solution: uniform sampling, find the category with cumulative density
* The mapping from CDF-tovalue is called Inverse distribution function (quantile function)

0.3

0.2

0.1

4/10 r Copyright @ 111S, Tsinghua University 86
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Sampling Methods

* Goal: sampling from P(x)
* Assume we have a valid probability measure
* P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)

* Let’s start from an easy example

e Categorical distribution

e Gaussian distribution?
* No closed-form CDF!

° Ce nt ra |_| | m |t th eorem Probability Density Function Cumulative Density Function

TETT

« Sample X; ~ Beroulli(0.5) Paavs I 3 e ‘ //»—

. E[X,] = 05;Var[X;] = 0.52 Hben, wmen = /

N
* Sy = hi=1 Xi

: 1
« AsN — 00, \/N(Sy — 0.5)~N(0,0.52) / |
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Lecture 4, Deep Learning, 2025 Spring

Sampling Methods

* Goal: sampling from P(x)

OpenPsi @ I111S

* Assume we have a valid probability measure
* P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)

* Let’s start from an easy example
e Categorical distribution

e Gaussian distribution?

* No closed-form CDF!

e Central-limit theorem

* Box—Muller transferm
* Most practical method (FYI)
* Uniform = Normal
* Polar form transformation

4/10
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def ‘box muller():
# Avoid getting u == 0.8
ul, u2 = 0.0, 0.0
while ul < epsilon er u2 < epsilon:
ul = random.random()
u2 = random.random()

nl = math.sgqrt(-2 * math.log(ul)) * math.cos(2 * math.pi *
n2 = math.sqrt(-2 * math.log(ul)) * math.sin(2 * math.pi *

return nl, n2

u2)
u2)

Probability Density Function Cumulative Density Function
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Sampling Methods

* Goal: sampling from P(x)

* Assume we have a valid probability measure

OpenPsi @

* P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)

def ‘box muller():

* Let’s start from an easy example
e Categorical distribution

e Gaussian distribution?

* No closed-form CDF!
Central-limit theorem
Box—Muller transform
General case x~N(u,02)

0.6

* High-dimensional case x~N(u, X)
« z~N(0,1)
4/10 e x = ZZ + ‘u Copyright @ I11S, Tsinghua Un

# Avoid getting u == 8.8
ul, u2 = 0.2, 0.0

while ul < epsilon er u2 < epsilon:

ul = random.random()
u2 = random.random()

nl = math.sgqrt(-2 * math.log(ul))
n2 = math.sqrt(-2 * math.log(ul))

return nl, n2

Probability Density Function

* math.cos(2 *
*# math.sin(2 *

1S

math.pi * u2)
math.pi * u2)

Cumulative Density Function

— T ‘ T T ‘ T T T
10— ] —
220.2, = | [ |p=0, 02=02 — / P
2=1.0, m— A P=0, 0?=1.0, m— L~
2250, =] 08 p=0, 0?=5.0, = v
220.5, = | |p=-2, 0?=05, — yd
06 £
.*}k
/I
04
y
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Sampling Methods

OpenPsi @ I111S

* Goal: sampling from P(x)

* Assume we have a valid probability measure

* P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
* Let’s start from an easy example

e Categorical distribution

e Gaussian distribution

* |dea: (1) use “easy” distsibltions to draw sample & (2) apply mathematical transform

PY M O re CO m p I ex d ist ri b utio n p (x) ? Probability Density Function Cumulative Density Function
I A, ' ' L ‘ A IR B 10— L ' ‘ ‘ RN
- oo gor—l] i ez _=
08 ‘ ' p=0, 0?=50, — 08" p=0, 0?=5.0,— /
- 77 7 | ‘ ‘p:—z.r o =o.75. —| L | p=-2, 0°=05, P
/
0.1
, h, I / /]
& — - /
4/710 2 3 4 S 6 7 Copyriqh§ @ 111S, Tsinghua Uni{versity y/ 90
0.0 ==
-4 3 -2 -1
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Sampling Methods

Weighted Sampling

e Goal: sampling from p(x) { . J ? @ }
* No CDF or nice mathematical property-available

* [dea: weighted samples 10% 20%  20% 30%
« sample from “easy” distribution.g(x) (e.g., uniform)

—~ 04
e Use p(x)/q(x) as the weight for the sample g o Original densiy function
* Importance Sampling S o3
O
* q(x) proposal distribution 3 025
, (). 2 02
CI(X) ( ) i 015_Importance Sampling
X £’ .1 | density function
E,. X)) =E,-~ X ] 5
X p[f( )] xX~q Q(X)f( ) E0.0S
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Sampling Methods

* Goal: sampling from p(x)

* No CDF or nice mathematical property-available

* |dea: weighted samples

* sample from “easy” distribution.g(x) (e.g., uniform)
* Use p(x)/q(x) as the weight

* Importance Sampling

4/10

* q(x) proposal distribution
* How to choose g(x)???

* g(x) needs to similar to p(x)
* Your homework ©

What if we don’t,have a universally.gaod.proposal?

OpenPsi @ I111S
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Markov Chain Monte-Carlo

* Markov Chain
* A state space §, a transition probability P(Sj|Si) =Tij;
* T is the transition matrix
* We also use T(s; — s;) to denote T;;

* A Markov Chain has a stationary distribution with a proper T
* Current distribution over states ¢ 1.0
* Single step transition sy = Tt
e Stationary distribution'm = T m,

1.0 0.0

e Goal: construct a Markov Chain \/@/\

«o * With a desired stationary distribution-f =-p(s)! () § 5

 Sampling is easy!
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Markov Chain Monte-Carlo

* How to ensure 1 is a stationary distribution of @ Markov Chain?

* Detailed Balance (sufficient condition)
n(s)T(s = s') =n(sHT(s/ "= s)
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Markov Chain Monte-Carlo

* How to ensure 1 is a stationary distribution of @ Markov Chain?

* Detailed Balance (sufficient condition)
n(s)T(s —» s') =n(s)HT(s! "= s)
* Design a Markov chain satisfying detailed balance for desired density p(s)!

4/10 Copyright @ 111S, Tsinghua University 95
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Markov Chain Monte-Carlo

* How to ensure 1 is a stationary distribution of @ Markov Chain?
* Detailed Balance (sufficient condition)
n(s)T(s = s') =n(sHT(s/ "= s)
* Design a Markov chain satisfying detailed balance for desired density p(s)!

* How to ensure a unique stationary distribution exist?

* The Markov chain is ergodic GR[A %) |
T(z> z") Intuitively: you can visit any desired state

min - min - = 0 > 0 with positive probability from any state
z. z''n(z')>0 T[(Z)

* Examples:
01 0.1 1.0

RN ) T = [1 0
O—Q==@—=® 0 1],

0.9
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Metropolis Hastings Algorithm

* Construct a valid Markov Chain T'(s' — ) for distribution p(s)
* Detailed balance: p(s)T(s = s') = p(s)T(s' =.5)
* Ergodicity

* Metropolis Hastings Algorithm
* A proposal distribution g(s'|s).to produce next state s’ based on s
* Draw s’ ~ q(s’|s)
p(s)a(s"~s)
" p(s)q(s=s’)
 Transition to s’ (aceept) with probability a (acceptance ratio);

* O.w,, stays at s-(reject)

* @ = min (1 ) (g(s. = s') to denotes q(s’|s) for simplicity)

* MH constructs-a valid Markov chain with a proper proposal g!
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Metropolis Hastings Algorithm: Example

* Choice of g(s = s")

* Random proposal g(s = s’) = s + noise (i.e., Gaussian/Uniform Noise)

 Acceptance ratio fors — s’

* a(s » s') = min (1 p(sl)q(sl_)s)) = min (1 p(s'))

" p(s)q(s=>s’) " p(s)

* MH sampling for the energy-based model p(s) = %exp(—E(s))

* Random initialize s

s'<q(s—>s)

Transition to s’ with probability a(s — s');
O.w,, staysat's

Repeat
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Metropolis Hastings Algorithm: Example

* Choice of g(s = s")

* Random proposal g(s = s’) = s + noise (i.e., Gaussian/Uniform Noise)

 Acceptance ratio fors — s’

* MH sampling for the energy-based model p(s) = %exp(—E(s))

4/10

* a(s » s') = min (1

e Random initialize s°

s’ « s + noise

CCVCER N

" p(s)q(s=>s’)

Transition to s’ with probability a(s — s');

O.w,, staysat's
Repeat

Copyright @ 111S, Tsinghua University

p(s’)

" p(s)

)
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OpenPsi @ I111S

Metropolis Hastings Algorithm: Example

* Choice of g(s = s")

* Random proposal g(s = s’) = s + noise (i.e., Gaussian/Uniform Noise)

 Acceptance ratio fors — s’

* a(s » s') = min (1

" p(s)q(s=>s’)

CCVCER N

P(S’))

" p(s)

* MH sampling for the energy-based model p(s) = %exp(—E(s))

4/10

e Random initialize s°

s’ « s 4+ noise

Transition to s> with probability min (1,

O.w,, stays at's
Repeat

p(s')
p(s)

Copyright @ 111S, Tsinghua University

) ; No partition function involved!
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Metropolis Hastings Algorithm: Example

OpenPsi @ I111S

* Choice of g(s = s")
* Random proposal g(s = s’) = s + noise (i.e., Gaussian/Uniform Noise)

 Acceptance ratio fors — s’

* a(s » s') = min (1 p(sl)q(sl_)s)) = min (1 p(s'))

" p(s)q(s=>s’) " p(s)

* MH sampling for the energy-based model p(s) = %exp(—E(s))

* Random initialize s
* For each iteration.t
e s’ « st +noise
« If E(s") <E(s"); themaccept stt! « &'
» Else accept’st* 1% s*with probability exp(E(st) — E(s"))
* Repeat Copyriaht & 111, Toiniia Unversity o

4/10
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Metropolis Hastings Algorithm

* The simplest way to construct a valid Markov chain
* Flexible, simple and general

* Quiz: proposal g in MH v.s. Importance Sampling
* A:q(s’|s) v.s. q(s); in MH, g generates‘local samples; in IS, g outputs “blind” guesses

* |ssues
* Curse of dimensionality: samples a completely new state
* Acceptance ratio: what if acceptance rate is low?
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Metropolis Hastings Algorithm

* The simplest way to construct a valid Markov chain
* Flexible, simple and general

* Quiz: proposal g in MH v.s. Importance Sampling
* A:q(s’|s) v.s. q(s); in MH, g generates‘local samples; in IS, g outputs “blind” guesses

* [ssues

* Curse of dimensionality: samples a completely new state
e Acceptance ratio: what if aceéptance rate is low?

 Can we designaproposal distribution g(s — s’) such that it always
gets accepted?
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Gibbs Sampling

* Gibbs sampling
* s = (Sp,51, .-, Sy), We construct a coordinate-wise q(s; — s;)
* q(s; = s;) = p(s;|sj=i) (conditional distribution)

* Dimensionality
* Sample a single coordinate per step.

* Gibbs sampling always get accepted!
* Acceptance ratio is always 1, a(s;='s;) =1  Prove it in your homework ©

* Assumption

* An easy to sample conditional distribution

* Conjugate Prior.and Exponential Family (https://en.wikipedia.org/wiki/Conjugate prior)
* What if no closed-form-posterior?

* Learn a neural.proposal to approximate the true posterior! ©

111S, Tsi Universi

(meta-learning MCMC proposals, Warig, WU, ‘et’al NIPS2018) N
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Sampling Methods

 What we have learned so far ...

* Importance Sampling
* Simplest solution by any proposal distribution

* Metropolis-Hastings algorithm
* Good local proposal = high acceptance ratio

* Gibbs sampling
* Posterior is easy-to-sample
* The “default” method for machinelearning among 2002~2012

* General Issues for MCMC'methods
» Slow convergence due to sampling (recap: SGD v.s. GD)

e Can we use gradient.information for MCMC?
* Energy function is differentiable!

4/10 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

105



Lecture 4, Deep Learning, 2025 Spring OpenPsi @ I111S

Stochastic Gradient MCMC

* MCMC with Langevin dynamics

* “Bayesian learning via stochastic gradient.langevin’dynamics”
* |ICML 2011, Max Welling& Yee Whye The (ICML 2021 test-of-time award)

* Given N data X4, ..., Xy, define p(6 — 6") by
€
0"« 6+ ?t Vo logp(6).+ z Vglog P(x;|10) | + N(0,€:1)
i

e Condition for a valid Markov Chain
* Y€ =o0and ¥ ef <o
* |nterpretation
* (stochastic) gradient descent first (Vg is large); MCMC around local minimum (Vg= 0)
* No need of MH acceptance rule

e Additional Reading:
* Hamiltonian Monte Carlo (SGD with momentum): https://arxiv.org/pdf/1701.02434.pdf
a0 ¢ https://arogozhnikov.github.io/2016/12/19%markovischain. merte carlo.html 106
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Summary

* Hopfield Network
* The first generative neural network
* Undirected complete graph
* Boltzmann Machine
* A probabilistic interpretation of Hopfield Network
* The first deep generative model
* Energy-Based

» Extremely flexible and powerful, designed to be multi-modal
* Hard to sample@nd learn
* Sampling is&he-core challenge!!
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What’s Next: Non-Sampling Methods

* Approximate Bayesian Inference

* Variational Inference (next lecture ©)

* Learn an parameterized distribution to
approximate the true posterior

* Design a model from which ' we can
easily draw sample!

e Lectures 6 & 7a

* Modern energy=based models Song et. al., 2021
] . OpenAl Blog: https://openai.com/blog/energy-based-models/
* Scoring matching
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Thanks!





